Wigner Measures in Noncommutative Quantum Mechanics
نویسنده
چکیده
We study the properties of quasi-distributions or Wigner measures in the context of noncommutative quantum mechanics. In particular, we obtain necessary and sufficient conditions for a phase-space function to be a noncommutative Wigner measure, for a Gaussian to be a noncommutative Wigner measure, and derive certain properties of the marginal distributions which are not shared by ordinary Wigner measures. Moreover, we derive the Robertson-Schrödinger uncertainty principle. Finally, we show explicitly how the set of noncommutative Wigner measures relates to the sets of Liouville and (commutative) Wigner measures.
منابع مشابه
Deformation quantization of noncommutative quantum mechanics and dissipation ∗
We review the main features of the Weyl-Wigner formulation of noncommutative quantum mechanics. In particular, we present a ⋆-product and a Moyal bracket suitable for this theory as well as the concept of noncommutative Wigner function. The properties of these quasi-distributions are discussed as well as their relation to the sets of ordinary Wigner functions and positive Liouville probability ...
متن کاملThe ⋆-value Equation and Wigner Distributions in Noncommutative Heisenberg algebras∗
We consider the quantum mechanical equivalence of the Seiberg-Witten map in the context of the Weyl-Wigner-Groenewold-Moyal phase-space formalism in order to construct a quantum mechanics over noncommutative Heisenberg algebras. The formalism is then applied to the exactly soluble Landau and harmonic oscillator problems in the 2-dimensional noncommutative phase-space plane, in order to derive t...
متن کاملMexican contributions to Noncommutative Theories
In this paper we summarize the Mexican contributions to the subject of Noncommutative theories. These contributions span several areas: Quantum Groups, Noncommutative Field Theories, Hopf algebra of renormalization, Deformation Quantization, Noncommutative Gravity, and Noncommutative Quantum Mechanics.
متن کاملTowards Adelic Noncommutative Quantum Mechanics
A motivation of using noncommutative and nonarchimedean geometry on very short distances is given. Besides some mathematical preliminaries, we give a short introduction in adelic quantum mechanics. We also recall to basic ideas and tools embedded in q-deformed and noncommutative quantum mechanics. A rather fundamental approach, called deformation quantization, is noted. A few relations between ...
متن کاملQuantum-like approach to financial risk: quantum anthropic principle
We continue the analysis of quantum-like description of market phenomena and economics. We show that it is possible to define a risk inclination operator acting in some Hilbert space that has a lot of common with quantum description of the harmonic oscillator. The approach has roots in the recently developed quantum game theory and quantum computing. A quantum anthropic principle is formulated ...
متن کامل